<form id="746hdv"></form>

<address id="746hdv"><listing id="746hdv"><meter id="746hdv"></meter></listing></address>

        <em id="746hdv"></em>

        <form id="746hdv"></form>

          
          

              English
              您所在的位置: 首頁 / 講座報告

              07月10日15:30 廖志鹏: Uniform Nonparametric Inference for Time Series

              講座編號:jz-yjsb-2019-y051

              講座題目:Uniform Nonparametric Inference for Time Series

              主 讲 人:廖志鹏    University of California, Los Angeles

              講座時間:20190710日(星期三)下午15:30

              講座地點:阜成路西校區綜合樓701

              參加對象:經濟學院教師、研究生

              主辦單位:研究生院

              承辦單位:經濟學院

              主講人簡介:

              Zhipeng Liao received his B.A. from Beijing Technology and Business University, M.A. from Peking University and Ph.D. from Yale University. He is an Associate Professor (with tenure) in Economics at UCLA. His research develops methods to use data to select among different economic models, and to make inferences from nonstationary time series data, and to make robust inferences from nonparametric models. His work has been published in the Econometric Theory, the Journal of Econometrics, the Quantitative Economics and the Review of Economic Studies.

              主講內容:

              This paper provides the first result for the uniform inference based on nonparametric series estimators in a general time-series setting. We develop a strong approximation theory for sample averages of mixingales with dimensions growing with the sample size. We use this result to justify the asymptotic validity of a uniform confidence band for series estimators and show that it can also be used to conduct nonparametric specification test for conditional moment restrictions. New results on the validity of high-dimensional heteroskedasticity and autocorrelation consistent (HAC) estimators are established for making feasible inference. Further extensions include time-series inference theories for intersection bounds and convex sieve M-estimators, which permit applications in partially identified models and nonparametric conditional quantile estimation, respectively. An empirical application on the unemployment volatility puzzle for the search and matching model is provided as an illustration.

               

               

                  <kbd id='746hdv'></kbd><address id='746hdv'><style id='746hdv'></style></address><button id='746hdv'></button>

                          <kbd id='746hdv'></kbd><address id='746hdv'><style id='746hdv'></style></address><button id='746hdv'></button>

                              热门地区: 扬中市 张家界 汉中 东港 抚顺 石家庄 宁波 广元 胶南 上饶 潮州 扬州 启东 内蒙古 昌平区 廊坊 璧山县 扬州 漳州 桦甸市 建湖 佛山 青岛 湛江 丹东 徐州 定州市 诸城 诸暨 慈溪市 北海 咸阳 章丘 黑河 防城港 凉山 通辽 图们市 莆田 泰州 锡林郭 垫江县 霸州市 涪陵区 溧阳 宁河 邹城 宜兴市 渝中区 龙泉市 衢州 富阳市 七台河 福清市 新沂 芜湖 南安 长寿区 如皋 阜阳 四平 衢州 昌邑 营口 镇江 诸暨市 无锡 哈尔滨 张家口 福州 龙口 常熟市 桂林 潍坊 陕西 房山区 霍邱 上海 大兴区 宣城 白山 济宁 金坛市 延吉市 牙克石 朝阳 江门 吉林 滁州 延安 建阳市 四平 连云港 常德 舒兰市 贵港 贵阳 济宁 临沂 牡丹江